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ABSTRACT

We investigated the effect of inverse Compton scattering in mildly relativistic

static and moving plasmas with low optical depth using Monte Carlo simulations, and

calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our

semi-analytic method is based on a separation of photon diffusion in frequency and

real space. We use Monte Carlo simulation to derive the intensity and frequency

of the scattered photons for a monochromatic incoming radiation. The outgoing

spectrum is determined by integrating over the spectrum of the incoming radiation

using the intensity to determine the correct weight. This method makes it possible

to study the emerging radiation as a function of frequency and direction. As a first

application we have studied the effects of finite optical depth and gas infall on the

Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and

discuss the parameter range in which the Boltzmann equation and its expansions

can be used. For high temperature clusters (kBTe _ 15 keV) relativistic corrections

based on a fifth order expansion of the extended Kompaneets equation seriously

underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution

from plasma infall is less important for reasonable velocities. We give a convenient

analytical expression for the dependence of the cross-over frequency on temperature,

optical depth, and gas infall speed. Optical depth effects are often more important

than relativistic corrections, and should be taken into account for high-precision work,

but are smaller than the typical kinematic effect from cluster radial velocities.
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-- methods: numerical -- plasmas -- scattering
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1. Introduction

Inverse Compton scattering of the cosmic microwave background radiation (CMBR) by hot

electrons in the atmospheres of clusters of galaxies, the Sunyaev-Zel'dovich (SZ) effect (Sunyaev

and Zel'dovich 1980), has become a powerful tool in astrophysics. It is one of the most important

secondary effects which cause fluctuations in the CMBR. We will refer to the effect arising

from static gas as the static SZ (SSZ) effect, and that arising from gas with bulk motion as the

kinematic SZ (KSZ) effect. Fluctuations in the CMBR caused by the SZ effects in an ensemble of

clusters of galaxies should dominate on angular scales less than few arcminutes. The nature of

these fluctuations depends on the evolution of clusters, and so it is a test of structure formation

theories (eg. Aghanim et al. 1998; Molnar and Birkinshaw 1998).

Observations of the SSZ effect, begun in the 1970s, have now become routine in the 90s

with dedicated instruments using the latest receiver technology (for reviews see Rephaeli 1995b;

Birkinshaw 1998). SZ effect and x-ray measurements probe the physical conditions in the

intracluster gas in clusters of galaxies, and allow us to deduce the distance to the cluster without

additional assumptions. This provides a useful independent method for determining the Hubble

constant.

Observations of the KSZ effect are much more difficult since it is typically an order of

magnitude smaller than the SSZ effect and has the same spectrum as the primordial fluctuations

in the CMBR. The KSZ effect provides a method of measuring radial peculiar velocities of

clusters, and even without the tangential velocity component, which might be determined using

the Rees-Sciama (RS) effect (Rees and Sciama 1968; Birkinshaw and Gull 1983; Gurvits and

Mitrofanov 1986; Aghanim et al. 1998; Molnar and Birkinshaw 1998) it should provide important

information on large scale velocity fields, which are closely related to the large scale density

distributions and thus to the average total mass density in the Universe. Useful limits on the size

of the KSZ effect for two clusters have recently been reporled by Holzapfel et al. (1997a).

Most discussions of the SSZ effect have been based oa non-relativistic calculations of its

amplitude, made via a Fokker-Planck type expansion of the Boltzmann equation (Kompaneets

1957). The advantage of this approach is that in interesting cases (electron temperature, Te,

much greater than the temperature of the incoming radiation) it provides a convenient analytical

solution for the spectrum of the emerging radiation. However, it has been recognized recently

that relativistic effects become important for clusters with kTe _ 10 keV. Rephaeli (1995a)

provided a relativistic solution for the SSZ effect as a series expansion in the optical depth (<< 1

for clusters). There is no exact analytical solution. The numerical integrals involved are tractable

in the single-scattering approximation, which is usually adequate in clusters. Fargion, Konoplich

and Salis (1996) developed exact expressions for relativistic inverse Compton scattering of a laser

beam with monochromatic isotropic radiation, finding goo=l agreement with the approximations

of Jones (1968). Their expression for the frequency redistribution function (FRDF) for scattering

of monoenergetic electrons with monochromatic photons a:grees with Rephaeli's result. Rephaeli's



methodhas been used in a series of papers to evaluate the SSZ effect for hot clusters. Relativistic

corrections to the SSZ effect, and to the standard thermal bremsstrahlung formulae, were applied

to determine the Hubble constant in hot clusters by Rephaeli and Yankovich (1997), however,

their corrections of the thermal bremsstrahlung equation were further corrected by Hughes and

Birkinshaw (1998). Holzapfel et al. (1997b) used the relativistic results in their determination of

the Hubble constant from observations of cluster Abell 2163.

The most general treatment of Compton scattering in static and moving media has been

derived by Psaltis and Lamb (1997) as a series expansion. As Challinor and Lasenby (1998b)

noted, however, more terms in the expansion should be taken into account for accurate treatment

of clusters of galaxies. Recently the Kompaneets equation has been extended to contain relativistic

corrections to the SSZ and KSZ effects (Stebbins 1997; Challinor and Lasenby 1998a, b; Itoh,

Kohyama and Nozawa 1998; Nozawa, Itoh and Kohyama 1998; Sazonov and Sunyaev 1998b).

Starting from the Boltzmann equation, an expansion in the small parameters of the dimensionless

temperature, Oe = kTe/(mec2), fractional energy change in a scattering, (hv' - hv)/kBTe, and

dimensionless radial velocity for the KSZ effect, vraa/c, leads to a Fokker-Planck type equation

(the extended Kompaneets equation). Corrections up to the fifth order in Oe have been derived

(Itoh et al. 1998). These calculations demonstrate the importance of the relativistic effects (in

accordance with the results of Rephaeli 1995a). Note however, that, as Challinor and Lasenby

(1998a) emphasized, the extended Kompaneets equation is a result of an asymptotic series

expansion, therefore it is important to estimate the validity of the expansion using other methods.

Nozawa et al. compared the convergence of their expansion to a direct numerical evaluation of

the Boltzmann collision integral, and concluded that in the Rayleigh-Jeans region the relativistic

corrections give accurate results in the entire range of cluster temperatures. Significant deviations

are found at higher frequencies for high temperature clusters.

The SSZ and KSZ effects must be separated in order to extract information on peculiar

velocities. Fortunately the two effects have different frequency dependence. The maximum of

the KSZ effect (in thermodynamic temperature units) occurs at about the "cross-over" frequency

where the SSZ effect changes sign from being a decrement to an increment. In a non-relativistic

treatment the cross-over frequency is a constant, 218 GHz, independent of electron temperature,

optical depth, and all other parameters. Rephaeli (1995a) showed that in the relativistic case

the cross-over frequency depends on the temperature, and his results were used by Holzapfel

et al. (1997a) in determining peculiar velocities of two clusters. Sazonov and Sunyaev (1998b)

and Nozawa et al. (1998) give approximations for the cross-over frequency as a function of

dimensionless temperature and radial peculiar velocity. They also conclude that relativistic

corrections to the cross-over frequency are important, and should be taken into account in future

experiments.

Other methods have been used to investigate inverse Compton scattering, such as numerical

integration of the collision integral (Corman 1970), multiple scattering methods (Wright 1979),

and Monte Carlo simulations. Simulations of inverse Compton scattering in relativistic and
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non-relativistic plasma have been carried out for embedded sources (Pozdnyakov, Sobol, and

Sunyaev 1983; Haardt and Maraschi 1993; Hua and Titarchuk 1995). Gull and Garret (1998)

used Monte Carlo methods to evaluate the Boltzmann collisional integral. Sazonov and Sunyaev

(1998a) used Monte Carlo simulations to derive the SZ thermal and kinematic effects.

In this paper we study the effect of optical depth and non-uniform bulk motion on the SZ

effect using a Monte Carlo method to calculate the frequency redistribution function. The inverse

Compton scattering of CMBR photons is treated in the Thomson limit for static and infalling

plasmas (SSZ and KSZ effects) with spherical symmetry, uniform density distribution, and low

optical depth over a wide range of gas temperatures and observed frequency. We apply our results

to clusters of galaxies assuming a static and radially infalling (or collapsing) gas component.

2. The Method

2.1. Formalism

The emerging intensity of a beam of radiation in the line of sight after passage through a

scattering atmosphere can be expressed as

t(x) = e- B(x) + Isc( ), (1)

where the incoming intensity (hereafter assumed to be Planckian), B(x), is attenuated by a

factor depending on the optical depth r and we add the scattered intensity into the beam, Isc, at

dimensionless frequency x = hv/kBTcB, where h, v, kB and TCB are the Planck constant, the

frequency, the Boltzmann constant, and the temperature of the CMBR, TCB = 2.728 ± 0.002 K

(Fixsen et al. 1996). The scattered intensity may be determined by using

?
Is (v)

] P(s) B,c(uo)ds, (2)

where the intensity of the scattered incoming radiation Bsc-V) = wscB(v), and wsc is the fraction

of photons scattered into the beam, the weight for this beam. P(s) is the frequency redistribution

function (FRDF), which specifies the probability of scattering from v0 to v as a function of

the logarithm of the dimensionless frequency s = ln(v/vo). This function gives the frequency

distribution (normalized to unity) of the scattered radiation (we give P(s) a slightly different

definition from the one given by Birkinshaw 1998). This dec.omposition is possible because in our

approximation the fractional frequency change is independcnt of the frequency (see equation 16

later). The change of the intensity in the line of sight may Ire expressed as

AI(x) = (e -r -- 1)B(x) + lsc(X). (3)



For isotropicand homogeneousscatteringconditions,sothat the scatteringparametersdo not
dependon wherethe scatteringhappens,the weight

wsc = (1 - e-r), (4)

which means that the out-scattered radiation is balanced by the same amount of in-scattered

radiation, and so there would be no net intensity change (AI(x) = 0) if there were no frequency

change (P(s) is the Dirac delta function). This assumption breaks down, for example, when

there is relativistic bulk motion, which introduces anisotropy in the scattering via the relativistic

beaming effect. Our task is to determine P(s) and Wsc. We used equation (4) as a check for our

Monte Carlo simulations for static models (where it must be correct), and verified that it is a good

approximation for our models with infall by counting outgoing photons. We derive P(s) using

a Monte Carlo method. At low optical depth (T g 1), the problem is suitable for Monte Carlo

simulation because we do not have to follow photons through many scatterings in the medium (the

average number of scatterings being T). Although in this limit most of the photons do not scatter,

and hence provide no information on P(s), this is not a problem since we can use the method of

forced first scattering (see below).

2.2. Monte Carlo Method

We give a short description of the method here, for a more detailed description see Molnar

(1998).

We assume an isotropic incoming low temperature radiation field (the CMBR). We use forced

first scatterings to study the inverse Compton process. The photons Compton scatter from an

electron population with a relativistic Maxwellian distribution of momenta in the rest frame of

bulk motion. We compute scattering probabilities in the rest frame of the electron in the Thomson

limit (Chandrasekhar 1950). This involves coordinate transformations from the observer's frame

to the rest frame of the bulk motion and to the rest frame of the electron. We assume time

translation invariance and spherical symmetry. Time translational invariance is not exact for

our model with infall, so that we make a snap-shot approximation. The error arising from this

approximation is less than the light crossing time over the infall time (_ vr/c = _r), which is only

a few per cent of the infall term for our models.

In most cases we use the inverse method to generate the desired probability distribution. We

use a rejection method when the inverse method leads to non-invertible functions or is too slow:

for a general description of generating probability distributions cf. Pozdnyakov et al. (1983); Press

et al. (1992). The former reference describes an alternative Monte Carlo method to treat inverse

Compton scattering.

In the description that follows we use the word "photon" in the singular to refer to one Monte
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Carlo "photon", one experiment in our simulation. We use a weight, win, to express the number

of photons this one experiment represents (the weight does not have to be an integer). We carried

out the simulation in five steps.

Step 1. The position and direction of incoming photons:

We assume that the photons arrive uniformly on a unit sphere (the radius of the gas is scaled to

unity). In a coordinate system which is placed at the point of impact, the direction cosine of the

incoming photons from the normal, #in, can be sampled as

/____._

m. = (5)

where we use [RN] to indicate a uniformly distributed random number drawn each time when it

occurs. The azimuthal angle is assumed to be uniformly distributed between 0 and 21r.

Step 2. distance to the forced first scattering:

We use forced first scattering, which means that we take the probability of scattering equal to one

on the photons' original line of flight through the gas. Using the inversion method, the optical

depth at which the incoming photon scatters becomes

71 = - ln(1 - [RN]. (1 - e-r°_)), (6)

where r°_ is the maximum optical depth in the line of sight (the superscript refers to the

number of times the photon has already scattered; zero in this case). Since we are using

forced first collisions, we have to account for the fraction of photons which are unscattered

on their path through the cloud. The scattered weight may be obtained from equation (4):

wsc = (1 -- e-r°*_)Win, and stays the same during subsequent (unforced) scatterings. The weight

of the photons passing through the cloud without scattering is Wout = wine -T°*_.

Step 3. scattering:

At the calculated position of the (forced first) scattering, we use the direction of the incoming

photon and obtain the direction of propagation and frequency of the scattered photon. In the

case that the gas is moving, we make a Lorentz transformation into the rest frame of the moving

plasma. We sample the scattered electron's dimensionless ¢elocity, fie = re�c, from a relativistic

Maxwellian distribution

where the normalization is

P(_e) d_e = Nret 1527 5 e -7/0" d_e,

Nret=(OeK2(1/Oe)) -1,

(7)

(8)
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K2 is the second order modified Bessel function of the second kind, and the dimensionless electron

temperature is

We used the rejection method to sample f_e.

kBTe
mec2. (9)

The distribution of the direction of electron momenta is simplest in a frame in which the

photon momentum unit vector points into one of the coordinate axes, z for example. In this

coordinate system the probability distribution of #e, the cosine of the angle between the unit

vector of the direction of photon propagation (z axis) and electron velocity, is

P(/_e,_e) = (1 -- f_pe)/2.

The inversion method leads to sampling #e as

(10)

..=;(111 (1,)
where the sign of the square root was determined so that in the limit of small electron velocities we

recover the result for an isotropic distribution (#e = 2[RN] - 1). The angular distribution of the

scattered electrons in the plane perpendicular to the momentum vector of the photon is isotropic

(at azimuthal angle uniformly distributed between 0 and 2_r). In the rest frame of the electron,

the cosine of the polar angle of the incoming photon is derived from a Lorentz transformation as

/z - 1 - &#e' (12)

where the negative sign in front of Pe is appropriate for an incoming photon. In the electron's rest

frame the scattering probability of a photon coming in with direction cosine # and leaving with

direction cosine/z' is given by Chandrasekhar (1950)

3 (1 + #2 #,2 _(1 #2)(1 #,2)).f(ju,iz')= _ + - --

#' can be sampled using a uniform probability distribution by inversion of

(13)

[RN]= [tt'f(#,_,)d#= 3 :(#2J-_ _, 1, ,3-_]/_ +(3-p2)p'- ,

which leads to a cubic equation for #1,

(14)

(.2__)/z1'13+(3-.2). '-38--(2[RN]+3)=0. (15)



This cubicequationhas a single real solution with absolute value of/_' less or equal to one.

We now transfer the direction and frequency of the scattered radiation back to the observer's

frame. The dimensionless outgoing frequency of the photon normalized to the incoming frequency

(expressed with the s parameter) becomes

s =ln_= ln(%2(1 - j3epe)(1 + _epl)). (16)

Step 4. loop over scatterings:

Having the point of scattering, the scattered frequency, and the direction of the scattered photon,

we now sample the optical depth to the next scattering. We do not use forced scattering, so the

optical depth follows from the usual (inverse) method as

rn = - ln[RN], (17)

where the lower index on r refers to the nth scattering (n > 1), and we used [RN] = 1 - [RN],

which is correct for uniform probability distributions. If r is less than the maximum optical depth

in the direction of the photon momentum after the previous scattering, r_, the photon is taken

to have scattered within the cloud, and we calculate the new scattering direction and frequency

of the scattered photon as in step 3. If rn > rn_, the photon escaped (scattered n - 1 times),

and we register the impact parameter (with the weight of the photon) and the dimensionless

frequency, s, of the escaped photon. At the end of the simulation we sum the weights in every

impact parameter bin to check our assumption of homogeneous scattering (equation 4).

Step 5. The frequency redistribution function:

When the simulation finishes, we derive the FRDF by binning the frequencies of the

out-coming photons. The discrete probability distribution then becomes

P(sk) = N, Ark. (18)

JV'k is the number of photons in the k th bin, for which sk - As�2 <_ s < Sk + As/2, where sk is the

center of the k th bin, As is the width of the bin, and N8 is the normalization, Ns = 1/(AsNMc).

NMC is the number of Monte Carlo photons. This P(sk) i_ our sampled approximation to P(s),

and we then fit an exponential of polynomials to P(sk) to get a convenient expression for the

FRDF. Our fit gives an approximation accurate to better than half a percent, except in the (small)

extended tails, where P(s) is under-represented. However, these regions lie 3 orders of magnitude

below the peak, and the error arising from the fit is negligible for our applications.



2.3. Testing the code

2.3.1. Single-scattering approximation

We tested our code by comparing our single scattering Monte Carlo results for the FRDF

(pMC) to those derived from Rephaeli (1995a). Rephaeli's single-scattering approximation can be
written as

where

3/;Pl(s) - 32Nret o"_e--7/Oe_e4(fl + f2 + f3) dee, (19)

fl 3s ,'_3 _ 3= e p_t_2-_2-/_13+m)

f2 = (E2e - 3(4eS + l) + 3eS(x2 + xl) +

f3 = 2eS(eS + l)(a-E2)ln x2,
Xl

2E2e --3(17X2Xl _4) ) es (x2 -- xl)

where Xl = 1 -Ee #1, x2 = 1 -Ee #2, #1 and #2 are defined by

(20)

-1 s__O#1 = 1-e-S (l+f_e)
a, s _> 0

{ 1-e-'(1-_,)
#2 = B, s < 0 (21)

1 s>0 '

and we used equation (16) to eliminate p/. This result (equation [19]) agrees with Fargion et al.

(1996). These expressions can be integrated numerically, except when s = 0. In that case _0 = 0,

and direct numerical integration is not possible because of the diverging E[ 4 term. For small

Ee (Ee < b = 0.1 for example) we can expand the logarithm, and use this expansion as a good

approximation. For s = 0, equation (19) becomes

where the integrand is

, )P1 (s = O) - 8 Nret fo dee + fo dee , (22)

-- 27 _+6_e+(3-Be)In .

A Maclaurin expansion of the logarithm to order E_ gives an adequate approximation

(23)
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/0b /0b (1313 11 )
with no remaining divergent terms for the first integral in equation (22).

We derive pMC(s) from our Monte Carlo simulation by using the results of only the first

(forced) scatterings. Figures la and lb show our Monte Carlo results, pMC, superimposed on P1

from equations (19) and (20) for dimensionless temperatures Oe -- 0.03 and 0.3. The agreement is

excellent, confirming that our Monte Carlo code is successfully reproducing P1 (s).

g.3.g. Testing the Numerical Integral for the Intensity Change

We derive the intensity change from the FRDF using a numerical integral (equation [3]). The

Kompaneets approximation leads to the following FRDF:

Pg --

where the Compton y parameter is

1 exp( (s-- 3y)2_¢__ _ ,, (25)

f
Oed_, (26)

y = ] neaT

where n e is the electron number density as a function of length in the line of sight measured by

and Oe is the dimensionless temperature (for a discussion see for example Birkinshaw 1998;

Molnar 1998). In order to check our numerical method, we used the Kompaneets FRDF (25) in

the numerical integral in equation (3), and compared the resulting intensity change to that of

obtained by the analytic solution for the Kompaneets approximation

zox4e x [ ex + [ )AIK = y (ez _ 1) 2 _Xe--_-___ --4,, (27)

where _o = 2(kBTcB)3/(hc)2) • We concluded that our numerical method is accurate better than

0.1%.

2.3.3. Relativistic Corrections to Kompaneets equation

We also compare our results to those from the extend,._d Kompaneets equation up to the 5th

order in Oe (Itoh et al. 1998). Itoh et al. expressed the intensity change as

An _0 x3
_I - (2s)

n eZ-1 '
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andprovidedexpressionsfor -_ (note,that their y parameter is actually r, the optical depth). On

Figure 2 we plot AI/T from the Kompaneets approximation, from Itoh et al.'s expansion, and for

our single scattering Monte Carlo results. From the figure we conclude that our single scattering

Monte Carlo result agrees with that of Itoh et al. at low temperatures, Oe < 0.03 (Te < 15 keV).

Deviations from the Itoh et al.'s result are already appearing at Oe = 0.03, and become more

pronounced at higher temperatures and high frequencies, as we would expect.

We conclude that our simulation method passes these two tests, and can now be used to

calculate the effects of multiple scattering and bulk velocity on the SZ effect.

3. Results

We performed a number of simulations for uniform density spherical models which are either

static or have radial infalls with constant gas velocity at all radii. These models cover a range of

To, the optical depth of zero impact parameter, electron temperature, Te, and gas infall speed, f_r.

Simulations with monochromatic incoming radiation were used to determine the FRDF.

In Figure 3 we show the FRDF for the static model with r0 = 0.05 at seven different

temperatures. At higher temperatures more photons scatter into higher energies, thus the FRDFs

are broader, and have lower peaks (since they are normalized to unity). We show the effect of

finite optical depth in Figure 4: higher optical depth leads to more scatterings, and therefore more

photons scattered to higher energies. Even for an optical depth as large as To = 0.1 the change in

the function is relatively small. In Figure 5 we show the effect on the FRDF of gas infall. Larger

infall velocities cause more up-scattering of the photons, and hence more spreading of the FRDF,

but the most obvious change is that the sharp peak at s -- 0 is smoothed out by the motion of the

plasma. At lower temperatures bulk motion causes larger departures from the static FRDF since

the infall speed is larger relative to the electron thermal velocity.

We used these results for the FRDF to calculate the spectra of scattered radiation by the

convolution in equation (2). We derived the intensity change using equation (3). In the static

model we have spherical symmetry and homogeneous and isotropic scattering conditions, therefore

the same number of photons scatter out of as into the beam, and we can use the weight given in

equation (4). In the case of infaU we checked that equation (4) is still a good approximation in the

regime in which we are interested.

We evaluated the emergent intensity change at zero impact parameter (i.e. through the center

of the gas sphere), where T -- To. In Figure 6 we show the intensity change AI for a static plasma

for two optical depths and five temperatures. Non-zero optical depth causes only slight changes

in the emerging radiation. Figure 7 shows the intensity change for a plasma with infall for two

infall velocities and three plausible cluster temperatures. Only small changes in the spectrum are

apparent, even with such large velocities.
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Onemeasureof the spectral deformation that has been used to quantify relative correction,

and which is of use in determining the frequency at which to search for the KSZ effect, is the

cross-over frequency. Challinor and Lasenby (1998a) and Birkinshaw (1998) suggested a linear

expression for how the frequency changes with temperature, as

X_oin = 3.830(1 + 1.13 Oe),

while Itoh et al. 1998 suggested a quadratic approximation

(29)

x0q= 3.830(1+ 1.1674ee - 0.s533e2) (30)

for most cluster temperatures. In Figure 8 we compare our Monte Carlo results with these

and other expressions that include relativistic corrections. Our Monte Carlo results for single

scattering are close to those obtained by numerical integration of the collision integral (Nozawa et

al. 1998). Relativistic corrections of third and fifth order (ChaUinor and Lasenby 1998a; Nozawa

et al. 1998), or the linear approximation (Challinor and Lasenby 1998a; Birkinshaw 1998) are

of varying accuracy in describing the curve: the linear and third order expressions give the best

results, but extending the series to the fifth order is much poorer. This is a consequence of the

asymptotic nature of the series, as emphasized by Challinor and Lasenby (1998a).

Figures 9 and 10 show the cross-over frequency as a function of dimensionless temperature

Oe for finite optical depth and infall velocity. Including a finite optical depth causes only a small

change in the X0(Oe) curve, and this change does not depend much on temperature. Based on

our Monte Carlo simulations, we suggest the following approximation for the cross-over frequency

for single scatterings in static spherical plasma for dimensionless temperature Oe g 0.3:

X_(Oe) = 3.827(1 + 1.2038 Oe - 1.256702 +0.9098 Oe),3

which fits better than 0.01% in this range with a shift from the optical depth dependence

(31)

AX_ (_'0) = r0(0.35 - 0.04416 O_-°'5), (32)

which fits better than 0.005 % for 0.05 < Oe <_ 0.3, and about 0.1% for lower temperatures, and

r0 < 0.5.

Figure (10) shows results for our spherical models wii h gas infall. As for non-zero optical

depth, additional energy transfers occur because of motiol_ of the gas. As we would expect, at

low temperatures the contribution to the electron velocity _om bulk motion is comparable to that

from thermal motion, and an enhanced frequency shift results, while at high temperatures this

contribution becomes negligible. Based on our Monte Carlo simulations, we suggest the following

approximation for the cross-over frequency shift in plasma with infall for 0.01 < ee <_ 0.3:
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AX0_(Oe,/_r) = 0.224/_ 2 O_-°'7. (33)

This formula fits the cross over frequency v0 better than about half a percent.

At small optical depth and bulk velocity we can assume that the shifts simply add, so that

the final expression for the cross-over frequency becomes

xoCe,,.,-o, = x cee) + +  Xo Cee, (34)

In Figure 11 we show the cross-over frequency as a function of temperature and optical depth

in the parameter range (Oe g 0.04, _'0 g 0.05) important for clusters of galaxies. From this

figure we may come to the conclusion that, for clusters of galaxies, the optical depth effect on the

cross-over frequency is more important than non-linear terms in the expansion in Oe. We provide

more accurate fitting formulae for this range. From our models we find

X_a(Oe, _-0,j3r) = 3.829 (1 + 1.1624 Oe -0.68948 O_) + 0.14 T0 + AX0_(Oe,_r), (35)

which fits better than 0.03 % for static models in this range of parameters. The optical depth

independent first term is similar to the approximation provided by Itoh et al. (1998), which was

obtained by numerically integrating the collision integral.

The relativistic corrections to the kinematic SZ effect (cluster radial bulk velocity, Wad) have

also been found to be important (Nozawa et al. 1998, Sazonov and Sunyaev 1998b) The shift was
found to be

°, .2]"-7 Oe -- emin + (Oe -- Orndn) 2 + a3 -{- a4 ee + a5 0 , (36)

where Vrad is the radial velocity, Orni,_ = 1.654 x 10 -3, al -- 3.857 x 10 -3, a2 ---- -4.631 x 10-6,

a3 ---- 1.370 × 10 -2, a4 = 1.014 x 10 -2, and as = 0.01 (Nozawa et al. 1998), which agrees well with

Sazonov and Sunyaev's (1998b) result (expressed by a different fitting function). In Figure 11, long

dashed lines represent the results of this kinematic effect of cluster radial velocity of -4- 100 km s -1

(XSt(Oe, O) + AXkoin(Oe, Vrad)) Comparing our results for the shift in the cross-over frequency to

results from relativistic kinematic effect, we conclude that a shift caused by an optical depth of

0.01 is equivalent to a shift caused by a radial velocity of about Vrad = --10 kms -1.

We estimate the amplitudes of these effects on the hot cluster, Abell 2163, which was

discussed by Holzapfel et al. (1997a). The maximum optical depth of the cluster is T0 -- 0.01, the

temperature of the intracluster gas is close to Oe = 0.03. Using our results for the static effect

with the given temperature and maximum optical depth we get about 100 MHz shift to higher

frequencies relative to the linear expression of Challinor and Lasenby (1998a). An infall velocity

of ;3_ -- 0.01 causes about an additional 15 MHz shift to higher frequencies relative to our result
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for the static model. These shifts are small relative to the 20 GHz band width of the instrument

of Holzapfel et al. (1997a) and the error in H0 and cluster radial peculiar velocity from ignoring

their presence would be about 10 % (if the SZ effect is measured at x _ 5) and 15 kms -1. By

comparison, the component of primordial anisotropy in this scale corresponds to adding a velocity
noise about + 200 kms -1.

4. Conclusions

We investigated the effect of finite optical depth and bulk motion on inverse Compton

scatterings in spherically symmetric uniform density mildly relativistic plasma. We assumed

isotropic incoming radiation (CMBR), a relativistic Maxwellian distribution for the electron

momenta, and scatterings in the Thomson limit. We demonstrated the usefulness of our Monte

Carlo method for solving the radiative transfer problem, and calculated the static and kinematic

SZ effects with different optical depth and gas infall velocities.

The solution of the extended Kompaneets equation (with corrections up to the fifth order) is

equivalent to a single-scattering approximation, and significant deviations from it occur for hot

clusters and at high frequencies. These deviations may be as large as 5 % of the intensity change

and neglecting them could cause about a 10 % error in the Hubble constant. A finite optical depth

causes further small changes in the SZ effect: these changes may exceed the relativistic correction

terms. For typical cluster temperatures, an accurate expression for the cross-over frequency as a

function of temperature, optical depth, and bulk motion is (35).

As it can seen from Figure 11, the cross-over frequency is sensitive to the cluster radial

velocity, and less sensitive to the finite optical depth. Measurements of the cross-over frequency

can, in principle, be used to determine the radial velocity of the cluster (e.g., as in Holzapfel

et al. 1997b), with small extra corrections for optical depth and possible gas motion inside the

cluster. However, the relatively strong variation of X0 with Oe, compared to T or /_r, suggests that

the largest uncertainty will arise from the assumption of c_uster isothermality, even if effects of

confusion from primordial (and secondary) CMBR fluctuations can be excluded.

Finally we note that our method can be extended to any geometry, density distribution and

complicated bulk motion as desired, and may be used to study the SZ effect in high temperature

plasmas with or without bulk motion.
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Fig. 1.-- The frequency redistribution function, P(s), for a static, single scattering case at

dimensionless temperatures Oe = 0.03 (a), or Oe = 0.3 (b). The solid line shows the result

from Rephaeli 1995b)'s semi-analytic method, the boxes with vertical error bars (too small to be

visible) show results from our Monte Carlo simulations.
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Fig. 2.-- The intensity change AI/T (in units of t0 :: 2(kBTcB)a/(hc) 2) as a function of

dimensionless frequency x = hv/(kBTcB) for dimensionless ;emperatures Oe = 0.01, 0.02, and 0.03

in static spherically symmetric models. The solid, dashed and dotted lines are results from Monte

Carlo method (single scattering), from relativistic corrections to the Kompaneets approximation

(Itoh et al. 1997) and the Kompaneets approximation (Kompaneets 1957) respectively. Note

that at low temperatures, Oe = 0.01 and 0.02, the single scattering Monte Carlo method and

the Kompaneets approximation with relativistic corrections give very similar results (the solid and

dashed lines overlap).
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Fig. 3.-- The frequency redistribution function, P(s), from Monte Carlo simulation of static plasma

with uniform density at seven temperatures. The higher the temperature, the lower the peak and

wider the function due to larger energy transfers from the hot electrons to the photons.
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Fig. 4.-- The inner part of the frequency redistribution function, P(s), for static clusters with

dimensionless temperatures Oe = 0.01, 0.02, and 0.03. The solid and dashed lines show the extremes

of single scattering and scattering with maximum optical depth To = 0.1. More scatterings lead to

more energetic photons, and hence more scattering from the line center to the high energy tail.
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Fig. 5.-- The single scattering frequency redistribution function, P(s), for infalling plasma with

dimensionless temperatures Oe = 0.01, 0.02 and 0.03. The solid, dashed and dashed dot lines show

results for models with infall velocities f_r = 0 (static), 0.03, and 0.05.
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Fig. 6.-- The intensity change AI/T (in units of _0 = 2(kBTcB)3/(hc)2)) as a function of

dimensionless frequency x = hv/(kBTcB) for five dimensioaless temperatures in static spherically

symmetric models, for single scattering (solid lines) and r0 = 0.1 (dashed lines).
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Fig. 7.-- The intensity change AI/v (in units of to ---- 2(kBTvB)3/(hc)2)) as a function of

dimensionless frequency x = hv/(kBTcs) for three dimensionless temperatures in spherically

symmetric models with infall. Monte Carlo results are plotted using single scattering approximation

for static gas (solid line) and gas with bulk motion (fir = 0.05, dashed line).
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Fig. 8.--The cross-overfrequencyas a functionof dimensionlesstemperature,Oe. The solidand

longdashed linesshow our Monte Carlo resultsforsinglescattering,and the resultsofa numerical

evaluationof the collisionintegral(Nozawa et al 1998). The dashed dot linerepresentsa linear

approximation (Challinorand Lasenby 1998a;Birkinshaw 1998).The shortdashed and dashed dot

dot dot linesuse relativisticcorrectionsof thirdand fifthorder inOe.
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Fig. 9.-- The cross-over frequency as a function of dimensionless temperature, Oe for static,

spherically symmetric plasma. The solid and dashed lines are our results for single scattering and

r0 -- 0.1, respectively. The dashed dot line shows a linear approximation (Challinor and Lasenby

1998a; Birkinshaw 1998). Finite optical depths cause a shift due to multiple scattering which is

almost independent of the temperature.
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Fig. 10.-- The cross-over frequency as a function of dimensionless temperature, Oe, for our

spherically symmetric model with infall. The solid and dashed lines are for infall velocities f_r = 0

(reference static model) and f_r = 0.05. We used single scattering results to show only bulk

motion effects. The dashed dot line shows a linear approximation (Challinor and Lasenby 1998a;

Birkinshaw 1998). The effect of infall becomes inconsequential at high temperature since the infall

speed becomes negligible relative to the thermal speed of the electron.
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Fig. 11.-- The cross-over frequency as a function of dimensionless temperature, Oe, for several

optical depths in a static spherical plasma. Our Monte Carlo results are from single scattering

(solid line), _'0 = 0.02 (short dashed line), 0.05 (dash, dot, dot, dot line), and 0.1 (dotted line).

The dash-dot line, which is hardly distinguishable from the solid line, is the linear approximation

of Challinor and Lasenby (1998a), and Birkinshaw (1998). As a comparison, we plot the (large)

effect of a radial cluster velocity of + 100 km s -1 (kinematic effect) with long dashed lines (Nozawa

et al. 1998; Sazonov and Sunyaev 1998b).




